Representation of Gaussian isotropic spin random fields
نویسندگان
چکیده
منابع مشابه
White Noise Representation of Gaussian Random Fields
We obtain a representation theorem for Banach space valued Gaussian random variables as integrals against a white noise. As a corollary we obtain necessary and sufficient conditions for the existence of a white noise representation for a Gaussian random field indexed by a measure space. We then show how existing theory for integration with respect to Gaussian processes indexed by [0, 1] can be ...
متن کاملEstimating Deformations of Isotropic Gaussian Random Fields on the Plane
This paper presents a new approach to the estimation of the deformation of an isotropic Gaussian random field on R based on dense observations of a single realization of the deformed random field. Under this framework we investigate the identification and estimation of deformations. We then present a complete methodological package—from model assumptions to algorithmic recovery of the deformati...
متن کاملFast generation of isotropic Gaussian random fields on the sphere
The efficient simulation of isotropic Gaussian random fields on the unit sphere is a task encountered frequently in numerical applications. A fast algorithm based on Markov properties and Fast Fourier Transforms in 1d is presented that generates samples on an n×n grid in O(n logn). Furthermore, an efficient method to set up the necessary conditional covariance matrices is derived and simulation...
متن کاملSkew-Gaussian Random Fields
Skewness is often present in a wide range of spatial prediction problems, and modeling it in the spatial context remains a challenging problem. In this study a skew-Gaussian random field is considered. The skew-Gaussian random field is constructed by using the multivariate closed skew-normal distribution, which is a generalization of the traditional normal distribution. We present an Metropolis...
متن کاملGaussian Process Random Fields
Gaussian processes have been successful in both supervised and unsupervised machine learning tasks, but their computational complexity has constrained practical applications. We introduce a new approximation for large-scale Gaussian processes, the Gaussian Process Random Field (GPRF), in which local GPs are coupled via pairwise potentials. The GPRF likelihood is a simple, tractable, and paralle...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Stochastic Processes and their Applications
سال: 2014
ISSN: 0304-4149
DOI: 10.1016/j.spa.2014.01.007